The short-period comets ‘problem’ (for evolutionists): by Robert Newton
Recently, astronomers have discovered that several KBOs ('Kuiper Belt Objects') are binary-they consist of two co-orbiting masses. What are the implications for Creation?
Comets-icy masses that orbit the sun in elliptical paths-are one of many evidence that the solar system is much younger than billions of years. Every time a comet passes near the sun, it loses some of its icy material to evaporation. (This stream of lost material is what gives rise to the characteristic comet tail.) A comet can only survive a certain number of orbits before it runs out of material completely.1 If the solar system were billions of years old, there should be no comets left. This is explained in detail in Dr Danny Faulkner's article 11036.
Evolutionary astronomers (who assume the solar system is billions of years old) must propose a 'source' that will supply new comets as old ones are destroyed. The Kuiper Belt2 is one such proposed source for short-period comets (comets that take less than 200 years to orbit the sun). The Kuiper belt is a hypothetical massive flattened disc of billions of icy planetesimals supposedly left over from the formation of the solar system. (The other proposed source is the Oort Cloud,3 which we have already addressed-see 9813.)
These planetesimals are assumed to exist in (roughly) circular orbits in the outer regions of the solar system-beyond Neptune (extending from 30 AU4 out to around 100 AU). It is thought that these objects are occasionally disturbed by gravitational interactions and are sent hurtling into the inner solar system to become short-period comets. In this fashion, new comets supposedly are injected into the inner solar system as old ones are depleted.
Astronomers have detected a number of small objects beyond the orbit of Neptune. The term 'Kuiper Belt Object' (KBO) is being applied to these objects. The first of these5was discovered in 1992, and many more have now been detected. What are we to make of these discoveries? Do these objects confirm the existence of a 'Kuiper Belt' as the evolutionists were expecting?
There is no reason to expect that the solar system would end abruptly at Pluto's orbit, or that minor planets could not exist beyond the orbit of Neptune. Many thousands of asteroids exist in the inner solar system, so we should not be surprised that some objects have been discovered beyond the orbits of Neptune and Pluto.6 Several hundred of these 'KBOs' have now been observed.7 But a Kuiper Belt would need around a billion icy cores in order to replenish the solar system's supply of comets. It remains to be seen whether KBOs exist in such abundance. Currently, this is merely an evolutionary speculation.
It should also be noted that the observed KBOs are much larger than comet nuclei. The diameter of the nucleus of a typical comet is around 10 kilometers. However, the recently discovered KBOs are estimated to have diameters ranging from about 100 to 500 kilometers.8 This calls into question the idea that these objects are precursors of short-period comets. So, the discovery of objects beyond Neptune does not in any way confirm a Kuiper Belt-at least not the kind of Kuiper Belt that evolutionary astronomers require. As such, the term 'Kuiper Belt Object' is a bit misleading. 'Trans-Neptunian Object' (TNO) would be a more descriptive term for these distant minor planets-and many astronomers use these terms (TNO and KBO) interchangeably.
Interestingly, astronomers have recently discovered that several TNOs are binary.9 That is, they consist of two objects in close proximity; these orbit each other as they orbit the sun. The tremendous controversy on the (evolutionary) origin of Earth's moon (see 11311) highlights the difficulty of forming (by random processes) two co-orbiting masses. Currently, giant impacts are being invoked to explain the origin of Earth's moon as well as Pluto's moon Charon. But these involve unlikely 'chance' collisions at precise angles and have other difficulties as well. Yet, we are finding that binary objects are far more common than previously thought.10 Might this point to a Creative Designer?
Some astronomers would classify Pluto as a (particularly large) Trans-Neptunian Object. Indeed, Pluto may have far more in common with TNOs than it has with the other eight planets-such as its icy composition and its orbital properties. In fact, a substantial fraction of the newly discovered TNOs have an orbital period nearly identical to that of Pluto.11 These are called 'Plutinos' (little Plutos). So, while Pluto is a dwarf among planets, it may be 'King' of the TNOs. Since Pluto's moon Charon is so large (relative to Pluto), Pluto is often considered a binary system. As such, Pluto could be considered not only the largest TNO, but the largest binary TNO as well. As these new discoveries continue to pour in, Creationists should delight in the marvellous complexity and structure of the universe God has created. http://www.answersingenesis.org/articles/cm/v16/n2/short-period-comets-problem
'Robert Newton' is a creationist astrophysicist currently researching for his doctorate at an accredited university in the USA. He graduated summa cum laude with a double major in physics and astronomy and a minor in mathematics, and a M.S. in astrophysics. Robert is a member of Phi Beta Kappa.